pharmaceutical scien的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列推薦必買和特價產品懶人包

國立臺北科技大學 能源與光電材料外國學生專班(EOMP) 陳生明所指導 Vetri Selvi的 金屬氧化物奈米顆粒插層還原氧化石墨烯複合材料應用於藥物的高效電化學感測分析 (2020),提出pharmaceutical scien關鍵因素是什麼,來自於製藥、金屬氧化物、金屬摻雜金屬氧化物、還原氧化石墨烯、環境污染物、奈米材料。

而第二篇論文中國文化大學 財務金融學系 王譯賢、楊馥如所指導 賴福明的 新產品預告效應與市場異常報酬反應 比較分析-基於iPhone的實證研究 (2019),提出因為有 事件研究法、智慧型手機、異常報酬、新產品的重點而找出了 pharmaceutical scien的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了pharmaceutical scien,大家也想知道這些:

金屬氧化物奈米顆粒插層還原氧化石墨烯複合材料應用於藥物的高效電化學感測分析

為了解決pharmaceutical scien的問題,作者Vetri Selvi 這樣論述:

中文摘要…………………………………………………………………………………………iABSTRACT………………………………………………………………………………….......iiiAcknowledgements……………………………………………………………………………....viiTable of Contents………………………………………………………………………………...xList of Figures…………………………………………………………………………………...xivList of Tables……………………………………………………………………………………xviiChapte

r 1 Introduction…………………………………………….……………………………….11.1 Pharmaceutical Drugs………………………………………………………………………….11.2 Classification of pharmaceutical Drugs………………………………………………………..2 1.2.1 Immunosuppressant Drug (Azathioprine)……………………………………….......2 1.2.2 Antimicrobial drugs (Chloramphenicol and Dimetridazole)…

………………….......2 1.2.3 Techniques for the detection of pharmaceutical drugs………………………………41.3 Electrochemical sensor…………………………………………………………………….......5 1.3.1 Advantages and limitation of electrochemical sensor……………………………….61.4 Nanomaterials…………………………………………………………………………………7 1.4.1 Manganese oxides………………

…………………………………………………...8 1.4.2 Doping of metal with metal oxide…………………………………………………..8 1.4.3 Strontium doped Zinc oxide…………………………………………………….......9 1.4.4 Manganese Doped Tin oxide………………………………………………………..9 1.4.5 Metal oxides-carbon nanomaterials………………………………………………...10 1.4.6 Reduced graphene oxide……

………………………………………………………111.5 Motivation and scope of the work……………………………………………………………131.6 Objective of the present work……………………………………………………………......141.7 Organization of the Thesis……………………………………………………………………151.8 Reference………………………………………………………………………………….....16Chapter 2 Instrumentation and Experimental

Methods …………………………………………202.1 Materials characterization……………………………………………………………………20 2.1.1 X-Ray diffraction microscopy…………………………………………………......20 2.1.2 Fourier Transform Infrared spectroscopy……………………………………….....21 2.1.3 Raman Spectroscopy……………………………………………………………….22 2.1.4 Field Emission Scanning

Electron Microscopy………………………………........23 2.1.5 High resolution transmission electron microscopy…………………………….......23 2.1.6 Energy-Dispersive X-Ray Spectroscopy…………………………………………...24 2.1.7 Elemental Mapping…………………………………………………………….......25 2.1.8 X-ray photoelectron spectroscopy……………………………………………...

.....252.2 Electrochemical characterization………………………………………………………….....25 2.2.1 Electrochemical Impedance Spectroscopy……………………………………........25 2.2.2 Electrochemical cell………………………………………………………………..26 2.2.3 Cyclic voltammetry…………………………………………………………….......26 2.2.4 Differential pulse voltammetry………………

……………………………….........27 2.2.5 Linear sweep voltammetry……………………………………………………........282.3 Reference……………………………………………………………………………………..29Chapter 3 An Electrochemical Platform for the Selective Detection of Azathioprine Utilizing Screen Printed Carbon Electrode Modified with Manganese oxide/reduced Grap

hene Oxide……………………………………………………………………………………..303.1 Introduction…………………………………………………………………………………..303.2 Experimental section…………………………………………………………………………32 3.2.1 Chemicals and equipment employed………………………………………………32 3.2.2 Synthesis of graphene oxide via hummers method………………………………..33 3.2.3 Synthesis p

rocedure for the Mn2O3/rGO composite……………………………….33 3.2.4 Optimization of Mn2O3–rGO………………………………………………………34 3.2.5 Fabrication of Mn2O3/rGO over SPCE…………………………………………….35 3.2.6 Electrochemical studies…………………………………………………………….36 3.2.7 Real sample preparation……………………………………………………………363.3 Results and di

scussion……………………………………………………………………….37 3.3.1 Structural evaluation……………………………………………………………….37 3.3.2 Morphological analysis…………………………………………………………….39 3.3.3 Electrochemical studies……………………………………………………………40 3.3.4 Electrochemical impedance spectroscopy…………………………………………40 3.3.5 Cyclic voltammetry stu

dies………………………………………………………..42 3.3.6 Differential pulse voltammetry…………………………………………………….47 3.3.7 Selectivity, repeatability, reproducibility, and stability studies…………………....49 3.3.8 Real-time studies……………………………………………………………….......513.4 Conclusion……………………………………………………………………………………523.5 References………

……………………………………………………………………………53Chapter 4 Electro-catalytic activity of nanosphere Strontium doped Zinc oxide with rGO layers screen printed carbon electrode for the sensing of chloramphenicol……………………564.1 Introduction………………………………………………………………………………….564.2 Experimental Methods…………………………………………………………………

…….59 4.2.1 Materials and characterization techniques employed………………………….......59 4.2.2 Preparation of Sr-ZnO/rGO composite…………………………………………….60 4.2.3 Fabrication of Sr-ZnO@rGO/SPCE modified electrode..........................................614.3 Results and discussions…………………………………………………………………….

...61 4.3.1 Structural analysis of Sr-ZnO@rGO through XRD, XPS and FTIR analysis……..61 4.3.2 Morphological studies……………………………………………………………..64 4.3.3 Electrochemical behavior of Sr-ZnO@rGO composite…………………………...64 4.3.4 Electrochemical impedance studies……………………………………………….64 4.3.5 Optimization of

Sr-ZnO@rGO................................................................................69 4.3.6. Sensitivity and selectivity of Sr-ZnO@rGO modified SPCE…………………….73 4.3.7 Repeatability, reproducibility, and stability……………………………………….74 4.3.8 Real sample analysis……………………………………………………………....764.4 C

onclusion………………………………………………………………………………......774.5 References………………………………………………………………………………......79Chapter 5 Anchored Floret-like Manganese Doped Tin Oxide Nanostructures onto Reduced Graphene Oxide Nanosheets as Electrochemical Sensor for Dimetridazole Detection…………………………………

……………………………………………..825.1 Introduction………………………………………………………………………………....825.2 Experimental section………………………………………………………………………..84 5.2.1 Materials and instruments………………………………………………………...84 5.2.2 Synthesis of floret-like assembly of Mn doped Sn oxide nanoparticles……….....85 5.2.3 Preparation of Mn-S

nO@rGO nanocomposite composite……………………….865.2.4 Fabrication of floret-like assembled Mn-SnO@rGO nanocomposite modified electrode………………………………………………………………………………...87 5.2.5 Real sample preparation…………………………………………………………..875.3 Results and Discussions………………………………………………………………….....88 5.3.1 Morphological

and structural features of Mn-SnO@rGO nanocomposite…….....88 5.3.2 Electrocatalytic behavior of Floret-like assembled Mn-SnO@rGO nanocomposite................................................................................92 5.3.3 Determination of DMZ with floret-like Mn-SnO@rGO nanoc

omposite/GCE….101 5.3.4 Selectivity, repeatability, reproducibility and stability of floret-like Mn-SnO@rGO nanocomposite/GCE towards DMZ detection………………………………………….104 5.3.5 Real sample analysis………………………………………………………………1055.4 Conclusion………………………………………………………………………………......1065.5 Referenc

es…………………………………………………………………………………..107Chapter 6 Summary and conclusion…………………………………………………………….110Chapter 7 List of publication…………………………………………………………………....112

新產品預告效應與市場異常報酬反應 比較分析-基於iPhone的實證研究

為了解決pharmaceutical scien的問題,作者賴福明 這樣論述:

本文採用Apple多年來推出的新款iPhone產品的發布日期,並將其作為HTC、LG、三星、Nokia、Sony、Motorola等新款旗艦手機作為參考點進行比較。以蘋果新iPhone產品的年度推出日期為基準,對2007年至2018年iPhone推出之前和之後推出的各品牌廠商的手機產品進行異常報酬差異性分析。調查結果說明本研究認為非Apple製造商應在推出新款iPhone之前推出新產品。由於每年推出新款iPhone的時間接近第三季度,先前的研究顯示出蘋果品牌忠誠度最高,消費者購買其他品牌手機的意願將會下降。結果可見,在第一周銷售新手機之前存在顯著的正向異常報酬,但在銷售日之後,它們變成負異常

報酬。此外,宣佈在iPhone發布後推出的新手機則有顯著的負向異常報酬。本研究結果顯示,當新的iPhone產品進入市場時,市場對各品牌廠商的股價反應,以便為不同維度的投資者提供參考。